402 research outputs found

    Comparisons of the North Polar Cap of Mars and the Earth's Northern Hemisphere snow cover

    Get PDF
    The boundaries of the polar caps of Mars have been measured on more than 3000 photographs since 1905 from the plate collection at the Lowell Observatory. For the Earth the polar caps have been accurately mapped only since the mid 1960's when satellites were first available to synoptically view the polar regions. The polar caps of both planets wax and wane in response to changes in the seasons, and interannual differences in polar cap behavior on Mars as well as Earth are intimately linked to global energy balance. In this study data on the year to year variations in the extent of the polar caps of Mars and Earth were assembled and analyzed together with data on annual variations in solar activity to determine if associations exist between these data. It was found that virtually no correlation exists between measurements of Mars north polar cap and solar variability. An inverse relationship was found between variations in the size of the north polar caps of Mars and Earth, although only 6 years of concurrent data were available for comparison

    Soil moisture variation patterns observed in Hand County, South Dakota

    Get PDF
    Soil moisture data were taken during 1976 (April, June, October), 1977 (April, May, June), and 1978 (May, June, July) Hand County, South Dakota as part of the ground truth used in NASA's aircraft experiments to study the use of microwave radiometers for the remote sensing of soil moisture. The spatial variability observed on the ground during each of the sampling events was studied. The data reported are the mean gravimetric soil moisture contained in three surface horizon depths: 0 to 2.5, 0 to 5 and 0 to 10 cm. The overall moisture levels ranged from extremely dry conditions in June 1976 to very wet in May 1978, with a relatively even distribution of values within that range. It is indicated that well drained sites have to be partitioned from imperfectly drained areas when attempting to characterize the general moisture profile throughout an area of varying soil and cover type conditions. It is also found that the variability in moisture content is greatest in the 0 to 2.5 cm measurements and decreases as the measurements are integrated over a greater depth. It is also determined that the sampling intensity of 10 measurements per km is adequate to estimate the mean moisture with an uncertainty of + or - 3 percent under average moisture conditions in areas of moderate to good drainage

    Botswana water and surface energy balance research program. Part 1: Integrated approach and field campaign results

    Get PDF
    The Botswana water and surface energy balance research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. Results of the first part of the program (Botswana 1) which ran from 1 Jan. 1988 - 31 Dec. 1990 are summarized. Botswana 1 consisted of two major, mutually related components: a surface energy balance modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components in general are described and activities performed during the surface energy modeling component including the extensive field campaign are summarized. The results of the passive microwave component are summarized. The key of the field campaign was a multilevel approach, whereby measurements by various similar sensors were made at several altitudes and resolution. Data collection was performed at two adjacent sites of contrasting surface character. The following measurements were made: micrometeorological measurements, surface temperatures, soil temperatures, soil moisture, vegetation (leaf area index and biomass), satellite data, aircraft data, atmospheric soundings, stomatal resistance, and surface emissivity

    The Polyakov Loop and its Relation to Static Quark Potentials and Free Energies

    Full text link
    It appears well accepted in the literature that the correlator of Polyakov loops in a finite temperature system decays with the "average" free energy of the static quark-antiquark system, and can be decomposed into singlet and adjoint (or octet for QCD) contributions. By fixing a gauge respecting the transfer matrix, attempts have been made to extract those contributions separately. In this paper we point out that the "average" and "adjoint" channels of Polyakov loop correlators are misconceptions. We show analytically that all channels receive contributions from singlet states only, and give a corrected definition of the singlet free energy. We verify this finding by simulations of the 3d SU(2) pure gauge theory in the zero temperature limit, which allows to cleanly extract the ground state exponents and the non-trivial matrix elements. The latter account for the difference between the channels observed in previous simulations.Comment: 14 pages, 3 figures, 1 table; note and reference adde

    Thermal imaginary part of a real-time static potential from classical lattice gauge theory simulations

    Full text link
    Recently, a finite-temperature real-time static potential has been introduced via a Schr\"odinger-type equation satisfied by a certain heavy quarkonium Green's function. Furthermore, it has been pointed out that it possesses an imaginary part, which induces a finite width for the tip of the quarkonium peak in the thermal dilepton production rate. The imaginary part originates from Landau-damping of low-frequency gauge fields, which are essentially classical due to their high occupation number. Here we show how the imaginary part can be measured with classical lattice gauge theory simulations, accounting non-perturbatively for the infrared sector of finite-temperature field theory. We demonstrate that a non-vanishing imaginary part indeed exists non-perturbatively; and that its value agrees semi-quantitatively with that predicted by Hard Loop resummed perturbation theory.Comment: 18 pages. v2: clarifications and a reference added; published versio

    Multi-Sensor Historical Climatology of Satellite-Derived Global Land Surface Moisture

    Get PDF
    A historical climatology of continuous satellite-derived global land surface soil moisture is being developed. The data consist of surface soil moisture retrievals derived from all available historical and active satellite microwave sensors, including Nimbus-7 Scanning Multichannel Microwave Radiometer, Defense Meteorological Satellites Program Special Sensor Microwave Imager, Tropical Rainfall Measuring Mission Microwave Imager, and Aqua Advanced Microwave Scanning Radiometer for EOS, and span the period from November 1978 through the end of 2007. This new data set is a global product and is consistent in its retrieval approach for the entire period of data record. The moisture retrievals are made with a radiative transfer-based land parameter retrieval model. The various sensors have different technical specifications, including primary wavelength, spatial resolution, and temporal frequency of coverage. These sensor specifications and their effect on the data retrievals are discussed. The model is described in detail, and the quality of the data with respect to the different sensors is discussed as well. Examples of the different sensor retrievals illustrating global patterns are presented. Additional validation studies were performed with large-scale observational soil moisture data sets and are also presented. The data will be made available for use by the general science community

    Estimating the Soil Temperature Profile from a single Depth Observation: A simple Empirical Heatflow Solution

    Get PDF
    Two field data sets are used to model near-surface soil temperature profiles in a bare soil. It is shown that the commonly used solutions to the heat flow equations by Van Wijk perform well when applied at deeper soil layers, but result in large errors when applied to near surface layers, where more extreme variations in temperature occur. The reason for this is that these approaches do not consider heat sources or sinks below the surface. This paper proposes a new approach for modeling the surface soil temperature profiles from a single observation depth. This approach consists of two parts: 1) modeling an instantaneous ground flux profile based on net radiation and the ground heat flux at 5 cm depth; and 2) use of this ground heat flux profile to extrapolate a single temperature observation to a complete surface temperature profile. The new model is validated under different field and weather conditions showing low RMS errors of 1-3 K for wet to dry conditions. Finally, the proposed model is tested under limitations in input data that are associated with remote sensing applications. It is shown that these limitations result in only small increases in the overall error. This approach may be useful for satellite-based global energy balance applications. Copyright 2008 by the American Geophysical Union

    TRMM-TMI satellite observed soil moisture and vegetation density (1998-2005) show strong connection with El Nino in eastern Australia

    Get PDF
    Spatiotemporal patterns in soil moisture and vegetation water content across mainland Australia were investigated from 1998 through 2005, using TRMM/TMI passive microwave observations. The Empirical Orthogonal Function technique was used to extract dominant spatial and temporal patterns in retrieved estimates of moisture content for the top 1-cm of soil (θ) and vegetation moisture content (via optical depth τ). The dominant temporal θ and τ patterns were strongly correlated to the El Niño Southern Oscillation Index (SOI) in spring (

    Land Surface Temperature from Ka-band (37 GHZ) Passive Microwave Observations

    Get PDF
    An alternative to thermal infrared satellite sensors for measuring land surface temperature (T<inf>s</inf>) is presented. The 37 GHz vertical polarized brightness temperature is used to derive T<inf>s</inf> because it is considered the most appropriate microwave frequency for temperature retrieval. This channel balances a reduced sensitivity to soil surface characteristics with a relatively high atmospheric transmissivity. It is shown that with a simple linear relationship, accurate values for T<inf>s</inf> can be obtained from this frequency, with a theoretical bias of within 1 K for 70% of vegetated land areas of the globe. Barren, sparsely vegetated, and open shrublands cannot be accurately described with this single channel approach because variable surface conditions become important. The precision of the retrieved land surface temperature is expected to be better than 2.5 K for forests and 3.5 K for low vegetation. This method can be used to complement existing infrared derived temperature products, especially during clouded conditions. With several microwave radiometers currently in orbit, this method can be used to observe the diurnal temperature cycles with surprising accuracy. © 2009 by the American Geophysical Union
    • …
    corecore